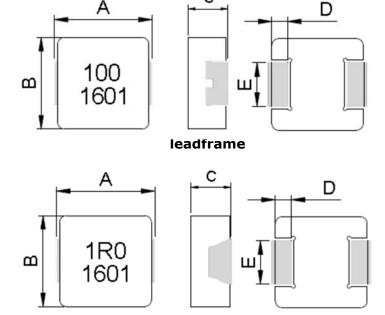
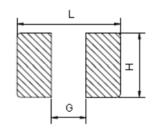


FEATRLRES


- Shielded construction.
- Capable of corresponding high frequency (5MHz).
- Low loss realized with low DCR.
- High performance (Isat) realized by metal dust core.
- Ultra low buzz noise, due to composite construction.
- 100% Lead(Pb)-Free and RoHS compliant.

APPLICATIONS

- DC/DC converters in distributed power systems.
- DC/DC converter for Field Programmable Gate Array(FPGA).
- Battery powered devices.
- Thin type on-board power supply module for exchanger.
- VRM for server.
- High current, low profile POL converters.
- PDA/notebook/desktop/server and battery powered devices.


CONFIGRLRATIONS & DIMENSIONS (unit in mm)

C

non-leadframe

Recommended Land pattern

L	G	н
14.5	8.0	5.0

Note:

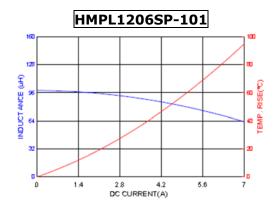
- 1. The above PCB layout reference only.
- 2. Recommend solder paste thickness at
- 0.15mm and above.

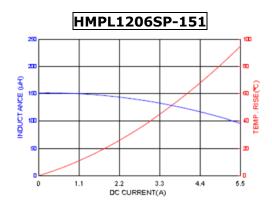
Туре	Α	В	С	D	E
HMPL1206SP	13.5±0.5	12.6±0.2	5.7±0.3	2.3±0.3	4.7±0.3

ELECTRICAL CHARACTERISTICS

	Inductance	Не	Heat Rating Current Saturation Current		DCR		T	
Part Number			DC I rms.(A)		DC I sat. (A)		mΩ)	Туре
	L0 A(uH)±20%	Тур	Max	Тур	Max	Тур	Max	
HMPL1206SP-1R5MN-D	1.50	28.0	24.0	32.0	27.0	2.4	3.0	non-leadframe
HMPL1206SP-8R2MN-D	8.20	13.5	12.0	17.0	15.5	13.5	16.0	leadframe
HMPL1206SP-100MN-D	10.0	12.0	10.5	16.0	14.5	15.5	18.6	leadframe
HMPL1206SP-150MN-D	15.0	10.0	8.50	10.0	9.00	24.0	29.0	leadframe
HMPL1206SP-220MN-D	22.0	8.00	7.00	9.00	8.00	31.2	37.5	leadframe
HMPL1206SP-330MN-D	33.0	6.50	5.50	7.80	6.70	56.0	68.0	leadframe
HMPL1206SP-470MN-D	47.0	5.20	4.50	6.70	5.50	76.0	88.0	leadframe
HMPL1206SP-680MN-D	68.0	4.50	3.70	5.80	5.00	103	124	leadframe
HMPL1206SP-101MN-D	100	3.20	2.80	5.00	4.00	162	195	leadframe
HMPL1206SP-151MN-D	150	2.60	2.20	4.10	3.20	270	325	leadframe

Note:


- 3.Testing Instrument(or equ): L: HP4284A,CH11025,CH3302,CH1320,CH1320S LCR METER / Rdc:CH16502,Agilent33420A MICRO OHMMETER.
- 4.Heat Rated Current (Irms) will cause the coil temperature rise approximately ΔT of 40°C
- 5. Saturation Current (Isat) will cause L0 to drop approximately 20%.
- 6.The part temperature (ambient + temp rise) should not exceed 125°C under worst case operating conditions. Circuit design, component, PCB trace size and thickness, airflow and other cooling provisions all affect the part temperature. Part temperature should be verified in the end application.
- 7. Special inquiries besides the above common used types can be met on your requirement.



TYPICALELECTRICALCHARACTERISTICS:

Reliability and Test Condition

Item	Performance	Test Condition				
Operating temperature	-40~+125℃ (Including self - temperature rise)					
Storage temperature	110~+40°C,50~60%RH (Product with taping) 240~+125°C (on board)					
Electrical Performance Test						
Inductance	Refer to standard electrical characteristics list.	HP4284A,CH11025,CH3302,CH1320,CH1320S LCR Meter.				
DCR	Relef to standard electrical characteristics list.	CH16502,Agilent33420A Micro-Ohm Meter.				
Saturation Current (Isat)	Approximately∆L30%	Saturation DC Current (Isat) will cause L0 to drop \triangle L(%)				
Heat Rated Current (Irms)	Approximately △T40°C	Heat Rated Current (Irms) will cause the coil temperature rise $\triangle T(\mathbb{C})$. 1.Applied the allowed DC current 2.Temperature measured by digital surface thermometer				
Reliability Test						
Life Test		Preconditioning: Run through IR reflow for 2 times.(IPC/JEDEC J-STD-020Dclassification Reflow Profiles) Temperature: 125±2°C (Inductor) Applied current: rated current Duration: 1000±12hrs Measured at room temperature after placing for 24±2 hrs				
Load Humidity		Preconditioning: Run through IR reflow for 2 times.(IPC/JEDEC J-STD-020DClassification Reflow Profiles Humidity: 85±2 * R.H, Temperature: 85°C±2°C Duration: 1000hrs Min. with 100% rated current Measured at room temperature after placing for 24±2 hrs				
Moisture Resistance	Appearance: No damage. Inductance: within±10% of initial value Q: Shall not exceed the specification value. RDC: within ±15% of initial value and shall not exceed the specification value	Preconditioning: Run through IR reflow for 2 times.(IPC/JEDEC J-STD-020DClassification Reflow Profiles 1. Baked at50°C for 25hrs, measured at room temperature after placing for 4 hrs. 2. Raise temperature to 65±2°C 90-100%RH in 2.5hrs, and keep 3 hours, cool down to 25°C in 2.5hrs. 3. Raise temperature to 65±2°C 90-100%RH in 2.5hrs, and keep 3 hours, cool down to 25°C in 2.5hrs, cool down to 25°C in 2.5hrs, keep at 25°C 80-100%RH for 15min and vibrate at the frequency of 10 to 55 Hz to 10 Hz, measure at room temperature after placing for 1~2 hrs.				
Thermal shock		Preconditioning: Run through IR reflow for 2 times.(IPC/JEDEC J-STD-020DClassification Reflow Profiles Condition for 1 cycle Step1: -40±2°C 30±5min Step2: 25±2°C ≤0.5min Step3: 125±2°C 30±5min Number of cycles: 500 Measured at room temperature after placing for 24±2 hrs				

		Oscillation Frequency: 10 ~ 2K ~ 10Hz for 20 minutes							
Vibration		Equipment: Vibration checker Total Amplitude:1.52mm±10% Testing Time: 12 hours(20 minutes, 12 cycles each of 3							
		orientations).							
Bending		Shall be mounted on a FR4 substrate of the following dimensions: >=0805 inch(2012mm):40x100x1.2mm <0805 inch(2012mm):40x100x0.8mm Bending depth: >=0805 inch(2012mm):1.2mm <0805 inch(2012mm):0.8mm duration of 10 sec.							
	Appearance : No damage.								
	Impedance: within±15% of initial value Inductance: within±10% of initial value	Тур	pe Peak value (g's)	Norma duration (ms)		Wave form	Velocity change (Vi)ft/sec		
Shock	Q : Shall not exceed the specification value. RDC : within $\pm 15\%$ of initial value and shall not	SN	100	11	Н	lalf-sine	11.3		
	exceed the specification value	Lea	ad 50	11	Н	lalf-sine	11.3		
Solder ability	More than 95% of the terminal electrode should be covered with solder.	Preheat: 150°C,60sec Solder: Sn96.5% Ag3% Cu0.5% Temperature: 245±5°C ∘ Flux for lead free: Rosin. 9.5% ∘ Dip time: 4±1sec ∘ Depth: completely cover the termination Depth: completely cover the termination							
		Бери	n. completely	cover the te	emman	OH			
Resistance to Soldering Heat			Temperature (°C) Time(s) Temperature ramp/immersion and emersion rate Number of heat cycles						
		(5	260 ±5 solder temp)	10 ±1	25mm/s	s ±6 mm/s	s 1		
Terminal Strength	Appearance: No damage. Impedance: within±15% of initial value Inductance: within±10% of initial value Q: Shall not exceed the specification value. RDC: within ±15% of initial value and shall not exceed the specification value e	020D With apply tested	OClassification the compone of a force(>08 of this force pplied gradual	n Reflow Proent mounted 05:1kg , <=(0.05:1kg , <=(0.05) kg	ofiles I on a P 0805:0.9 iled for 6 o apply	PCB with 5kg)to the 60 +1 seco	the device to be e side of a devonds. Also the foot to the components wide	e tested, ice being orce shall	
.	neorning magguroment regult : magguroment shall be mag	<u> </u>	10.0						

Note : When there are questions concerning measurement result : measurement shall be made after 48 ± 2 hours of recovery under the standard condition.